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ABSTRACT 

Expressions for the exact power of th«?two-sample Mann-Whitney 

Wilcoxon U test procedure against alternatives of exponential and 

rectangular populations have been derived. Several examples for total 

sample sizes of 11 and 15 have been compared with Mood'a median test. 

Mood» s test is more powerful than the U test in all instances in 

which the number of observations from the null population exceeds the 

number from the alternative population. The converse is true when 

the number of observations from the null population is less than the 

number from the alternative. 

Expressions for the asymptotic efficiency of the Mann-Whitney- 

Wilcoxon Ü test relative to Mood's and Massey's tests and the like- 

lihood ratio test have been derived for exponential populations. The 

asymptotic efficiency of the U test relative to the likelihood 

ratio test is zero. 

Mood's and Massey's test procedures for two samples have been 

extended to the case of discriminating among c populations on the 

basis of c ordered samples. Expressions for the exact power have 

been derived for Mood's test with exponential and rectangular popu- 

lations and for Massey's test with exponential populations. With 

exponential translation alternatives,the tests are biased. 

The exact null distributions of goodness of fit tests for one- 

way and two-way contingency tables indicate that even for samples as 

small as ten, the exact distribution is closely approximated; by a 

chi-square distribution with the appropriate degrees of freedom. 
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SUMMARY 

Many rank tests are available to discriminate between two 

populations on the basis of two ordered samples frow the populations. 

Of them, Mood's test procedure [16] based on the median of the com.- 

bined samples, Massey's extension of Mood's test [15} based on frac- 

tiles, and the Mann-Whitney-Wilcoxon U test procedure [H] based 

on the number of times an observation from the second sample exceeds 

an observation from the first sample, have much to commend them as 

quick tests. 

The exact powers of Mood's and Massey's tests against alter- 

natives of translation in normal and exponential populations and 

change in location and scale in a rectangular population have al- 

ready been investigated by Barton [2] and Chakravarti, Leone, and 

Alanen [13]. Also, the exact power of the U test against the al- 

ternative of translation in the normal population has been computed 

by Dixon [6]. 

In Chapter I, expressions for the exact power of the two- 

sample Mann-Whitney-Wilcoxon U test procedure against alternatives 

of exponential and rectangular populations have been obtained. 

Several examples of the power for total sample sizes of 11 and 15 

have been compared with similar results obtained from Mood's median 

test procedure. The results of the comparison indicate that for 

these two alternatives: 

iv 
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i) If the number of observations from the null population 

is less than the number from the alternative, the 

Mann-Whitney-Wilcoxon U test is more powerful than 

Mood's median test. 

ii) If the number of observations from the null population 

is greater than the number from the alternative, then 

Mood* s test is more powerful than the Mann-Whitney- 

Wilcoxon test, 

ili) If the number of observations from both populations 

are the same, then both test procedures give approx- 

imately the same power. 

In Chapter II, expressions for the asymptotic efficiency of 

the Mann-Whitney-Wilcoxon U test relative to Mood1s and Massey's 

tests and the likelihood ratio test have been derived for exponen- 

tial populations. The asymptotic efficiency of the Mann-Whitney- 

Wilcoxon test relative to the likelihood ratio test is zero, but in 

the case of Mood's and Masaey*s tests the resulting expressions are 

non-zero. 

Chapter III is devoted to extending Mood's two-sample test 

procedure to the case of distinguishing among c(c > 2) populations 

on the basis of c ordered samples from the population^. The 

appropriate expressions for the power functions for exponential and 

rectangular alternatives have been derived, and typical results for 
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the case of three samples from exponential populations Indicate that 

the tet,t can be biased, especially when the level of significance is 

small. 

Similarly, in Chapter IV, Massey's two-sample test procedure 

is extended to the case of distinguishing among c(c > 2) popula- 

tions on the basis of c ordered samples from the populations. Ex- 

pressions for the exact power have been derived for the exponential 

translation alternatives, and again, typical results for the case of 

three samples indicate that the test can be biased, especially, when 

the level of significance is small. 

In Chapter V, the exact null distribution of goodness of fit 

tests for one-way and two-way classifications is considered. 

Typical results are computed and are compared with the usual chi- 

square approximation. In general, the chi-square distribution with 

the appropriate degrees of freedom closely approximates the exact 

distribution, even for total sample sizes as small as ten. In 

addition, the exact power of the test statistic arising from a 

one-way classification has been computed for several alternatives, 

and the results have been compared with both non-central and 

central chi-square approximations. The results of the comparison 

indicate tLat both approximations tend to overestimate the power 

for small sample sizes, however, both approximations differ at 

most by one percent. 
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CHAPTER I 

EXACT POWER OF SOME TESTS BASED ON THE MANN-WHITNEY U STATISTIC 

1.1 Introduction. 

Many rank tests are available to discriminate between two 

populations on the basis of two ordered samples from the populations. 

Of them, Mood's test [16], based on the median of the combined 

samples, Massey's extension of Mood's test [15], based on fractiles, 

and Mann-Whitney's U test [14], based on the number of times an 

observation from the second sample exceeds an observation from the 

first sample, have much to commend them as quick tests. 

The exact powers of Mood's and Massey's tests against alter- 

natives of translation in the normal and exponential distributions 

and change in location and scale in the rectangular distribution 

have already been computed by Barton [2 ] and Chakravarti, Leone 

and Alanen [13]. Also the exact power of the Mann-Whitney U test 

against the alternative of translation in the normal distribution 

has been computed by Dixon [ 6]. 

The purposes of the investigation in this chapter are: 

(i)  To derive the exact power functions for the Mann-Whitney U test 
of two samples against alternatives of exponential and rec- 
tangular populations. 

(ii) To tabulate and compare these results with those obtained for 
Mood's median test in order to evaluate if there is any result- 
ant gain in the use of the Mann-Whitney U test. The latter is 
more elaborate than the former. 



1.2.1 The Two Sample Problem - Mann-Whitney U Teat. 

Let X^, X,» ..., X   and Y,, I_,..., Y   be independent- 

ly distributed with continuous cumulative distribution functions 

(cdfs) F and G respectively. We want to test the hypothesis 

Ho : F(x) = G(x) , 

against the alternative H, given by 

^ : F(x) > G(x) . 

Let n = n^ + ru denote the size of the combined sample and Z/.x < 

Z/£\ < •«• < Z/ \ be the combined ordered X's and Y's. This 

ordering is unique with probability 1, since  Pr{X. = X.i} = 

?r[Yi = Y±i} = Pr{X. = Y^ = 0 due to the assumption of continuity 

of F and G. 

The test originally proposed by Wilcoxon [22] is based on 

the statistic T which is the sum of the ranks of the Y's in the 

combined ordered sample. A test of size °< based on Wilcoxon's 

statistic is: 

reject H if T > t, and 
o    - <=< 

accept HQ if T < t^ , where Pr[T > t | H } < <* . 

This test was modified by Mann and Whitney [14] by defining 

a statistic U which is equal to the number of times a Y precedes 

an X in the combined ordered sample. Then,a test of size <* 

based on the Mann-Whitney U statistic is 

reject H if U < u_ and 
O       - or 

accept H0 if U > u^ , where Fr{'J < U* I H } < « . 



This U statistic is related to Wilcoxon1s T statistic by 

U = r^ Oj + £ n2(n2 + 1) - T , (1.1) 

which gives a simple way of computing U from the observed value of 

T. The exact distribution of U under the null hypothesis H has 

been tabulated by Mann and Whitney [14]« 

1.2.2 The Null Distribution. 

Mann and Whitney have shown that the null distribution can 

be calculated recursively from 

\,»M ■ ^ V'"^1 * \^~z Vvl<U) 

with 

r0,n. (u) = 0 

P_ 0(u) = 0 

V(u)  '* 

if u > 0 , 

(1.2) 

if u = 0 , 

and 

Vn2 
(u) =0 if u < 0 , 

where P    (u) = PrfU =u I H I for samples n.,n_      l     ' o' 

However, it would be desirable to be able to express the null distri- 

of size n^ and n2 . 

bution in closed form and to simultaneously derive a joint density 

function which could be used to calculate the exact power under 

fixed alternatives. 

-_J 



Let us first consider that the set [y, | i = 1, 2, ..., n?] 

has been chosen from G noting that there are n„ factorial ways 

of obtaining the set. Next we order the set and then compute the 

probability of choosing a set [x. | j = 1, 2, ..., n,} from F 

such that a specific value for U is obtained.  (That is, we want 

an expression for the joint distribution of U and the Y's.) For 

simplicity, we will first consider the special cases of n„ = 1, 2, 3 

and then generalize the results to the case of arbitrary n_. For 

convenience, wa define the following set of symbols to simplify the 

notation. 

Let [i ] be an arbitrary set of integer variables. Define 

k-1 
(a) § = u - 2 (X+I)i, for k > 1, with $ = u, 

*     1=1 l l 

k-1 
(b) \    = 5 + 2 i 

K   x  i=1 i for k > 1, with X, = 5 , 

k-1 
(0) c<k = D;L - Xk = al -  u + 2 t  i , for k > 1, «^ n^^, 

(d) g, = - min (0, <*, ,/kJ, where a fraction such as a/b 

denotes the largest integer contained in the quotient 

of a divided by b, 

(e) (i1? i2, ..., ik 
- n 

1* n i i 
Li=i  J 

(n - 2 i )• 
.    1=1 l 

-1 

(f)  6 
ij 

1 for i = j , 

0 for i / j . (1.3) 

For simplicity throughout, F(y.) and G(y.) will be written as 

F. and G. respectively. 



Let a, = 1, then we have one value of y say y,, and we 

want to choose u values of x greater than y,, and n^-u 

values less than y,. Since F is the cumulative distribution 

function of x, we get: 

/nA  n,-u    u dG, 

ta(u, 7l> = 11 [u)h       ^l*      dy^' ° < u < \ .     (1^> 

Using the special notation, this expression becomes 

/nA <*      g  cß 

«•"tf-vU)'1    i> **' <1-5) 
where 6Q «is the Kronecker delta defined by (1.3f) . 

If n- = 2, we want to choose n. values of x from F such 

that the total number of x' s greater than y, and y2 is equal 

to u. This can be accomplished in several ways, noting that each 

value of x greater than y2 is counted twice in generating the 

value of u. The resulting joint distribution of u, y^, and y,, is 

(n.   \  n.-u+i.,     u-21, 

u-2i*. ij'l    ~(VF1> 

i. cC. <£- 

where i, denotes the number of x1 s that are greater than y,. 

The sum over i. includes all permissible values of i. such that 

none of the exponents in the expression become negative. Thus,these 

restrictions on the allowable values of i.  can be restated in the 



follovi.-jg form: 

(i)      u - 2^ > 0 =£ i± < u/2 = tjz , and 

(ii)    n1 - u + i, > 0 =^I.  > - min(0, n,-u) = 0,  or g- = 0 . 

These results may be combined together to yield 

*1 < *1 < V2  * 

Recalling that   0- = 0   whenever    i., > 0.,    (1.6) can be written in 

the following form: 

V2 

h(u, y,, y2)  = 21^ l^2>0 C^X 1 2^F2-Fl) ^        dy^   dy^. 

(1.7) 

Similarly for n_ = 3, we want to choose n. values of 

x from F such that the total number of x's greater than y,, 

y_, and y, is equal to u. Again,those values of x between 

y2 and y, are counted twice, while those greater than y_ are 

counted three times. The resulting joint density function of u, 

y,, y2, and y_ under these circumstances is 

V2 52/3 
h(u, yv  y2, y3) = 3«. £   £ 6    /£  £. A F^-F^ • 

i^O i2=o 
J ^  -1 7 

(F3-F2) 
X(l-F,) '2 ^ ?2 ?a,  (1.8) 

3   d7l dy2 dy3 

where i^ denotes the number of x's greater than y_ and less 



than y_ and 1^   denotes the number of x's greater than y-,. 

The joint density function for the general case can be found 

by using techniques similar to those used in the previous cases. 

This argument yields 

h(u, y,, .... y ) =«2«.  [ ... I I      60 ^ 

(v'i v)'1 ¥l,%' 

i, \-2 V-l 
(F3-F2)  - {Fn2-\-l

] (1"V 

^1 ^2 ...  n2 
dy, dy2   dy 
12     n2 . (1.9) 

Now the distribution of u under the null hypothesis:; F=G, 

can be found by integrating the y' s over the range - •* < y, < ... 

< y  < • . To simplify the integration, we transform the variables 
n2 

of integration from yi to FCy^ = F±,    and the new range of in- 

tegration is 0 < F, < ... < F„ < 1. Me will first consider the 1       n2 

special cases of n2 = 1, 2, 3 and then extend the results to the 

general case. 

For n2 = 1, we substitute F1 = G. in '(1.4) and integrate. 



This yields 

<P, ,(u) = I   V ,0 (u1) FiVU(l-Fi)U «*! = «« >0A^ 1)        (1-10) 
0 1 

Again in the case    n2 = 2,    we substitute    F± = G,, i = 1, 2    into 

(1.7)  and integrate.    Thus 

*l/2 n X    F2   c< 
»o<u> = 2i   I 4B2,0 (^i^f   /   ^^-F^U-F/

1
^ dF2 u 

i,=o *   \2   y o o 
(LID 

Fi 
netting Q = — in the inner integral, (1.11) becomes 

2 

V2 1 1 

Vu> = 2i  I Vk-W «f Q   (1^    dQ F2     "   (1"F2)   dF2 ' i =o  *   V    ; oo 
(1.12) 

which yields two complete Beta functions upon integration. The re- 

sulting expression in simplified form is 

2'. n,l 
<Po(u) = (n t2)t ffiax [0' (V2) " 01 + ^  . (1'13) 

Similarly the case for n2 = 3 yields three complete Beta 

function integrals that can be simplified to 

V2 
3'. n '. 

*o{u)  = (ni +  3)1  I max f°» (V3) " 02 + 1]  .      (1'U) 

i1=0 



The general case for arbitrary n- can be developed in the 

same manner starting with (1.9). The resulting integrals simplify 

to n_ complete Beta functions. These results can be simplified 

to yield 

*o(l u) = (nrrbr E -   I   «* to, W^-Vi^ 
1  *  i,=0   i  .=0        *      2 

n2-2 (1.15) 

As a check, «PQ(u) was evaluated for the cases n= 8, 1< n,< 8, 

and 0 < u < n*n_, which showed complete agreement with the results 

given by Mann and Whitneys'  recursive formulas (1.2}. 

1.3.1    Poter of U Test Against the Alternatives of Translation in 
tho Exponential Population. 

Here the alternative hypothesis considered is 

F(x)    =    1 - e"x x > 0 , 

=    0 x < 0 , 

G(y)    =    1 - e~(y-a) 

=    0 

H (.1.15) 
y > a , 

y < a ,    where   a > 0 . 

Let    «p (u)    denote the probability of   U   taking on the 
Cl 

value u given that H  is true. Then a 

<Pa(u) = j ... J h(u, y]_, ..., yn ) dy3 ... dyn     (1.16) 

where h is given by (1.9). We will first consider the results 

for the special cases of n_ = 1, 2, 3 and then will extend the 



10 

results to the general case. For convenience of notation we further 

let 

11 = e"a ,  Y = l - T) . (1.17) 

Then for n^  = 1, the function to be evaluated under the alterna- 

tive hypothesis H  is 

*.< 
u)= Vxnv^1"'1^1*1- (1.18) 

Since G1 - 0 for y^ < a, the range of integration on y. can be 

reduced to a < y, < « , and ue can substitute 

F1 = Y + TV}  = 1 - IKI-G^) valid for a < yx < » , 

into (1.18). This yields 

9a(U) = Wl)*1 \>° J" (Y + ^ Gl)C<1(1-Gl)q *1 .  U-1*) 

Now if we expand (Y + T\ G-J        by the binomial theorem and inter- 

change the order of summation and integration, we get 

\V v=0*    I 0 (1<2 (1.20) 

The resulting Beta function can be simplified to yield 

*a< 
-1 r c< -v i. wi 

u) = nr ll fie ,o L b     ^   J /[(Vv)lUi+v+1),-] . 
1      v=0 (1.21) 
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Likewise in the case n„ = 2, (1.16) becomes 

».<»> = *  I V Qh)   /      J 2 fiVi) 
i1=0     2      V     j/y2=a   yx=a 

(1-F2)     dFj^dSj ,      (1.22) 

where the range of the y" s has been reduced to a < y, < y2 < «* , 

since G = 0 for y < a. Now substituting 

F. = Y + T\ G. = 1 - 71(1 - G.) valid for a < y. < -    (1.23) 

*2 
in (1.22) and expanding the term (y  + T| G,)   we get 

ix=o  *  v=oV   y 

r1 r°2 v    *2   *i 
j   J    Gi <02-°i>   {1^2>     *i *2 . 
0 0 

(1.24) 

By transforming the variables of integration we get two complete 

Beta functions which can be simplified to 

5/2     «2 

h=° v=0 

^-v ^HU  _ 

"] 
[(o(2-v)i(i:2+v+i1+2)i]"1 

(1.25) 
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In the case n- = 3, we get three complete Beta functions. 

These can be simplified to yield 

Xx/2   X2/3 «L 

<Pa(u) = nii 31 I        I   6  0 £ y 3 ^ 
o(,-V X-+V 

hr° V0 v^O 

-1 
[(°<3-v)».(X3+v+3)'.]  # (1.26) 

Following a development along the lines used in the previous 

special cases, we get in the general case n_ complete Beta func- 

tions. These simplify to give 

cpa(u) = n,.. n^ I   ...   I I dp j0 

n-  <* -v X +v 2   n_    n_ 

a,    n„   2y (1.27) r v2 n 
v=0 

The power of the test can be computed from (1.27) by evalu- 

/[(tf„-v)».U +v+n,)l] 
2 

ating uc< 

Pr{ U < Uc< | Ha } = I   <pa(u) 
u=0 

(1.28) 

where u^ is determined from °< , the level of significance, by 

evaluating 

Pr{ U < Uo( | Ho } < =< . 
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1.4 Power of U Test Against the Alternatives of Change in Location 
and Scale in the Rectangular Population. 

The alternative hypothesis is given by 

F(x) = x       0 < x < 1 , 

= 0       x < 0 , 

= 1       x > 1 , 
Hae { , (x-29) v G(y) =   (y-a)/9 a < y < a+9 , 

= 0       y < a , 

= 1       y > a+9 , where a > 0, 9 > 0 . 

Let <Pae(u) denote the probability of U taking on the 

value u given that H   is true. Then as in (1.16) 

*ae(u> = S '" S  h(u» ^i' •••' \} d?i ••• d\ ' 
(1.30) 

where h is given by (1.9). For notational convenience let 

b = 1 - a . (1.31) 

There are two cases to be distinguished, namely: 

(i)    a + 9 < 1,    (ii)    a + 9 > 1. 

1*4.1    a f 9 < 1. 

As before, we will consider first the three special cases, 

n- = 1» 2, 3 and then will extend the results to the general case. 

Then for n2 = 1, the function to be evaluated under the 

alternative hypothesis H - is; 

' 



u 

*ae( 

yl= •     /nA <*     ? 
u)=   J v(«i)?i (1"Fi) *1- (1.32) 

Since G^ = 0 for y. < a and G, = 1 for y, > & + 8, the range 

of integration on y, can be reduced to a < y, < a + 9, and we 

can substitute 

F1  = a + BG1     valid for a < y. < a + 8 , 

in (1.32). This yields 

«,     5-, 
^9(u) = gv J <a+eGi> ^-«vx *l .  <1 .33) 

*1 n 
Now if we expand (a + 9 G1)   and (b - 9 G^   and interchange 

the order of summation and integration, we get 

«1 h 
/nl \     o  r> I ^ V^i 1   « °

<
T"

V
 ^i"^ v+^ 

v=0 q=0 

0 

This expression can be integrated and simplified to yield 

(1.34) 

«1 h 
q <* -v ? -q v+q 

»ae(u) = nll ö0,,oZ  I It-1) a 1 b L 8  ][(=<1-v)-(r1-q)l. 

v=0 q=0 

vl ql (v+q+1)] (1.35) 
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Likewise in the case ru = 2, (1.30) becomes 

1      X   ' (1.36) 

where the range of the y's has been reduced to a < y, * yj, * a+8 

since G = 0 for y < a and G = 1 for y > a + 8 . Now substitu- 

ing F. = a + 9 G.  valid for a * y. * a + 9    (1.37) 

o<2 
in (1.36) and expanding the terms (a + 8 G,)   and 

we get 

i,=0    v=0 q=0 \*  7 \ /   ' 

(b-8G> 

1  G 
9      J  J W0!*  S*!*^  .      (1'38) 

0  0 

Letting Q = G,/G_, the innermost integral in (1.38) yields a 

complete Beta function. The resulting expression when integrated 

and simplified becomes 

<P, 

S,/2 «      i. 
V r    r q   Vv   1iH»   Vv+q, 

We(u)  - n,.. 2'.     [6 £     [[(-1)    a2     b1      92        ]   ' 
i1=0    *      v=0 q=0 

[ql   (i1-q)i(c<2_v)'.(52+v+l)l(52fv+q+2)]"1    ^ (1> 39) 



^ 

16 

In the case a. = 3» we get two complete Beta functions 

that can be simplified to yield 

V2 V3 *3    *2 

'ae^ = V3i  I    Iv.oE   I C(-i)-3  b2   e3  2     ] • 
ix=0 i2=0    3    v=0 q=0 

yv)l  (i2-q)l (X^+v+a) i(X3-i2+v+q+3)]"1  #    (1#A0) 

Following a development along the lines used in the previous 

special cases, we get in the general case n_ - 1 complete Beta 

functions. The resulting integrated expression can be simplified 

to give 

V2V3   \j«2    \ v 
*ae(u) =nll n2l  I  I •*•   I 60 ,0 I      I 

i-.=0 i =0    i  .=0 n2  v=0 q=0 
1   2      n2-l 

« -v i  ,-q X„ -i  ,+v+q 

[(-1) a 2  b 2    0 2  2     ] 

!-l 
l*{\^l\-l^ '•(\-"0,-l^V1)'\-in2-l^

+n
2) I"\ 

d.a) 
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1.4.2 a * 9 = 1. 

In this special case (1.41) can be further simplified to 

yield 

ae(u) =V "2''  I  I -   I   40 ,0 I  I 
■^=0 i2=0   i ^=0 °2  v=0 q=0 

<P, 

* -V X  +V 

[("lU"2 b "2 ] [q.(o< -v)l(i  ,-q)l  • n2    VX 

(\    -i ,+v+n.-l)\(\    -i  1+v+q+n.)]"
1 

n2 a,-!   2    n2 n2-l    2     ^  (1> 42) 

1.4.3 a -i- 9 > 1 . 

This case must be further subdivided into two subcases, 

namely:       (i) a < 1  > 

(ii) a > 1 . 

1.4.3.1 a < 1^ 

For a < 1, the range of integration for y can be split 

into four parts, namely:  (1) - » < y < a,  (2) a <_y < 1, 

(3) 1 < y < a + 9,  (4) a + 9 < y < » . Over parts (1) and (4) 

the value of the integral is zero since G is constant. Hence, we 

will consider only the ranges (2) and (3). 

1 1 
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For the case of ru = 1, (1.30) becomes 

<Pae(u) = 11 

(1.43) 

since    Sj = u   and   u = °   ^Plies that   0. = 0 . 

Consider   P,(u)    defined by 

Pl(u)  = (n.0-1     I^^^A^U-F,)51^    m :i.u) 

Perform the following substitution: F^ = a + 9 G,, a £ y, < 1 . 

Then (1.44) becomes 

Pl<»> = (»I')"1   J «s    0( £) (a * 9 QjAb - 9 G/
1
 dS1    _ 

° V/ (1.45) 

If we expand both binomials and integrate the resulting expression, 

(1.45) takes the form: 

«1 ?1 
q cCj-v gj+v+l 

?1(U) = 60 ,oI  I N"1*  a X  b X   He v« ql (oc^v)'. • 
1 v=0 q=0 

(5,-q)1. (v+q+1)]"       (1.46) 
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If we define 

P0(u>=4u,o/V- • 

then since G-^l) = b/0 , (1.43) can be written as 

(1.-47) 

cpae(u) = n^. I» [Pl(u) + P0(u)(l -b/0)]  B   (1>48) 

!f "2 = 2» the expression for 9 Q(u) can be broken down 

into three integrals as follows: 

1 y „V2 

y2=a y;L=a ix=0 *  \   / 

» 

a+0   1 

y^=i y-i=a   \ / y2-i yx= 

a+9  y„ 

21 6u,0 J   J2 *1 * (1.49) 

y2=i 7i=i 

Note that when ^ = 0, then ?k = ?k_r ^ = «^ ^ = \k.r 

3k = ^k-1 ^k = 2' ^> *••' n2^ * Also u = ° imPlie3 that 01 = 0 . 

1 1 
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Let ua consider the first of the above three integrals by defining 

1  W2      .v^ i 

y2=a yi=a ii=0   ^ -y 

We can substitute 

F.  = a + 0 G.  ;      a * y,  s 1 , 

2 . 

(1.50) 

(1.51) 

into (1.50).  Also we can expand the binomials and interchange the 

order of summation and integration.    This yields 

V2   «2    h 
V ^VizVV 

i^O v=0 q=0    *       \^      7 \   /   \ 
(-D q . 

Wl^A***1 1     y2 
a -    b *    9 " !       J   Gl «VV  ^2 *1 *2    . 

y =a y.=a '2 ~ Jl 
(1.52) 

This expression integrates and simplifies to 

V2 «2 *1 
„ q c< -v 5-+i,+v+2  2 

P2(u) = L     I     [[(-1}  a    b        He ql (ii-q)'. • 
i,=0 v=0 q=0 

i-l («2-v)i(S2+v+l)K ?2+v+q+2)]" 

(1.53) 



21 

With this notation (1.49) can be written as 

<Pae(u) = njl 2». [P2(u) + P1(u)(l - b/8) + P0(u)(l - b/e)
2(2t)"1]< 

(1.54) 

For   n- - 3» the expression for   <p „(u)    becomes 

V2 V3 

*ae(u) 

y3=a y2=a y^a i^O i2=0   >     \*3' XV x2/ 

h *i 1? 
(F2-F1)  

J>(F3-F2)  1(1-F3)  * d^ (E2 dCj + 

a+9      1        y0    ?l/2 

31 J   J    J      IVfeH 
y3=l y2=a y-^a    i^O   *      \ *     kJ 

^       ^W  2 

(1-F2)  X d^ dG2 dG3 + 

a+0     y,      1 

y3=i y2
=1 y!=a        \ / 

a+e     y3   /2 
31    J       J       I   «,»,0*1*2*3        . 

y3=l y2=l y1=l 
(1.55) 
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How, if ve define 

1  y3  y2 h/2 V3 

y3=a y2=a y^a ^=0 i2=0 *  1*3' 11» < 

F1
3(F,-F1) 

3(F,-F,) 1(1-F3) 
2 dG1 dG2 «3 , rl v*2 *1' v*3 2 

which upon integration and simplification, becomes 

V2 V3 «3 Hr 
Vu'= E  E E Ek,.»'-1' 

i,=0 i„=0 v=0 q=0L J 

\V\V^]. 
kl v "2 

,3„, [9^ q». (c<3-v)'. (i2-q)l (\3-i2+v+2)i (^.1^3)] 
-1 

(1.56) 
then (1.55) becomes 

<Pa9(u) =1^1 31 £ |PJ(U) (l-b/eJ^tO-j)'.]"1} . 
j=0 *" J 

(1.57) 

In an analogous fashion for the general case, we can define 

P.(u) and obtain 

Vu) ■ E -   E E E Y.o'-1' '   "     I • 
il=0  ij-l=0 v=0 q=0 I- 

(1.58) 

[ej ql (^-v)«. (ij^-qJKXj-ij^+v+J-DKXj-i^j+v+q+Jjr^ 
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for    j > 2,    with   P0(u),    PX(U)    as previously defined. 

Then 

"2 

«P. ae(u) = Dli ujl   I /pd(u) (l-b/eJ^Kiij-jJl]"1]     (1.59) 
J=0l 

1.4.3.2   a * 1 

In the case aal, the results are trivial, namely: 

a+9   yn„ 

«P, ae (u) =n2l 6u,0 J   J    '•• J  *i*2 — 
=a y 

'2    n2 
yn„=a V-l=a  yl=a 

dG, =6 A n-      u,0 

(1.60) 

Using the above results for   <PaQ(u),    the power of the U test 

under the alternative hypothesis can be calculated from 

Pr{ U « ^ |  Hae}    =   L   cpae(u)     , 

u=0 
(1.61) 

where u^ is determined by the level of significance, c<, from 

the relation 

Pr{ U * Uc< | Ho} * « 

1.5 Results 

Tables 1.1 and 1.2 compare the powers of the Mann-Whitney U 

test against Mood's median test. The numerical results for Mood's 

test presented in Tables 1.1 and 1.2 were taken from Leone., 



2U 

Chakravarti and Alanen [13]. In Table 1.1, the exponential alterna- 

tive is considered for various values of the location parameter, a, 

for a = 0(0.1)1, 1.5, 2, 3, for sample sizes 11 and 15. It should 

be noted that when the location parameter is zero, we get the null 

distribution with the power equal to the level of significance, o(. 

Since the distributions of the test statistics are discrete, the 

values of <=< do not in general coincide for both the tests. Hence, 

although many different cases have been computed, only those values 

that are relatively close together and which indicate the general 

trend, have been tabulated in Table 1.1. The conclusions that can 

be drawn from this table (relative to the exponential alternative) are: 

1) If n. is smaller than n-, the Mann-Whitney test is more 

powerful than Mood's test. To note this increase of power, 

several cases were intentionally chosen where the level of 

significance for the Mann-Whitney test was slightly less 

than that of the Mood test. In these cases, the power of 

Mann-Whitney's test rapidly overtakes Mood1s test as the 

location parameter, a, increases. 

2) If n1 is larger than n_, Mood's test is more powerful 

than the Mann-Whitney test. Likewise, to note this increase 

of power, several cases were intentionally chosen where the 

level of significance for Mood's test was slightly less than 

that of the Mann-Whitney test. In these cases, the power of 

Mood's test rapidly overtakes Mann-Whitney's test as a 
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Increases. 

3) In those cases in which n,s>n_, the two test procedures 

seem to exhibit powers that are approximately the same- 

The rectangular alternative for the special case in which 

0 = 1 - a, is considered in Table 1.2. The values of the parameter, 

a, range between 0.0 and 0.9 with increments of 0.1 (where the 

value of 0*0 indicates the level of significance, <*, of the test 

under the null hypothesis). The total sample sizes chosen are again, 

11 and 15. As in the case of the exponential alternatives,the levels 

of significance do not in general coincide, since the distributions 

are discrete, but in those cases in which the levels are relatively 

close together, the results indicate that the conclusions drawn from 

the exponential data continue to hold in the rectangular case. 

In both of these tables, a is non-negative. If the alterna- 

tive hypothesis were for a < 0, the same situation would hold. 

That is, if n, > n_, the Mood test would exhibit more power, while 

the Mann-Whitney test woui- be more powerful for n, < n_. 

These results (that is, with respect to the exponential and 

rectangular alternatives) indicate that in those cases when n, >n2, 

it is preferable to use Mood's median test over the Mann-Whitney U 

test. A further advantage in the case of Mood's test is that the 

experiment needs to be run only until the median of the combined 

sample has been observed.  In many experiments, this fact gives rise 

to a reduction in the cost, due to savings in time, experimental 

material, availability of equipment, and the like. 

1 1 
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1.6 Further Extensions. 

First, the results in Tables I and II should be extended to 

larger sample sizes to see if the previous results still hold. This 

extension will also indicate how rapidly the results approach the 

asymptotic situation, and the complete tables can be used to de- 

termine \.he sample size required to obtain a given power. 

Second, tables similar to Tables I and II should be com- 

puted for comparing the Mann-Whitney U test with Massey's two 

sample test. 

Third, exponential alternatives with a change in the scale 

parameter should be considered. Power functions for these alterna- 

tives can be developed for Mood's, Massey's and Mann-Whitney's two 

sample tests, and tables comparing these results can be computed. 

Fourth, an attempt should be made to analytically compare 

the power functions of Mood's, Massey's and Mann-Whitney's tests 

independent of the computational results to see if the same conclu- 

sions are indicated. 

Fifth, an attempt should be made to develop a class of 

functions to which the results of this chapter can be applied. 

Sixth, the power function for the Mann-Whitney U test 

can be extended to the case of c samples for whatever tests are 

developed for the c sample case. 
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CHAPTER II 

ASYMPTOTIC RELATIVE EFFICIENCY OF THE MANN-WHITNEY ü TEST ÜCAIKST AN 

EXPONENTIAL ALTERNATIVE 

2.1 Introduction. 

In Chapter 1, the exact power of the Mann-Whitney two sample 

U test for discriminating between two populations was derived. Two 

types of alternatives were considered; namel;', a change in location 

of an exponential population and a change in location and scale of a 

rectangular population. 

The asymptotic relative efficiency of the Mann-Whitney U test 

against an alternative of a change in location of a normal population 

was shown to be 3/" [16], [ 1 ]. The asymptotic relative efficiencies 

of Mood's test based on the median, and Massey*s test based on the 

first quartile and the median, when compared against the likelihood 

ratio test appropriate for detecting a shift in location of an expon- 

ential population, were found to be zero by Chakravarti, Leone, ar.d 

Alanen [ 3]. 

In this chapter the asymptotic relative efficiencies, of the 

Mann-Whitney U test, when compared with the likelihood ratio test, 

Mood's and Massey's tests for detecting a shift in location of an 

exponential population, are considered. 
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2.2 Limiting Distribution of the Mann-Whitnev U Statistic. 

Let us define the statistic V     by 
nl'n2 

Vaj = U/(nln2> ' (2.1) 

then 

E(\,a2) = 
E<U> ^l^'1    » (2.2) 

and 

Var\,^ = Var<u> t^r2 
(2.3) 

It ha3 been shown by Lehmann, [ll] and [12], that 

n_* (v     - E(V    )\ *2 Vv^      n;L,n2y (2.-4) 

has an asymptotic normal distribution, provided that as n,,ru *   •» 

(n_/n.) -» constant < « . (2.5) 

Furthermore, Mann and Whitney [14] have shown that 

E(V   ) = f G dF , (2.6) 

and 

nin2Var(Vn >n ) = [(n1+n2+l)/l2]+[(n1-l)(X -c^Mfcj-DO .-*,)]- 

[(n^ng-: L)\2]  , (2.7) 
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where 

X = fc - J G dF, ^ * (1/3) - J G2 dF, and «2 = (3/Ö)-J(l-Fl
2dS 

Thus, the expressions for the mean and variance of U can be written 

a3 E(U) = njOj J*G dF , (2.8) 

Var(U) = (n1n2){[(n1+n2+l)/l2]+(n1-l)(X-<1)+(n2-l)(X-«2) - 

(n1+n2-l)X
2} # (2#9) 

With the exponential alternative considered in Chapter 1 (See Equa- 

tion (1.15))., (2.8) and (2.9) become 

E(U) = (n^/2) e'a 
(2.10) 

and 

Var(u) = (n1n2/l2)[(n1+n2+l)+2(n1-l)(l-e"
a)+2(n2-l)(l-e"

a)(l-2e"a)- 

3(n1+n2-l)(l-e-
a)2] g    (2#n) 

2.3 Asymptotic Relative Efficiency of the Mann-Whitney U Test. 

Let 9, the parameter of interest, label the sequence of 

distributions. Consider the null hypothesis H : 9 = 9  and the 
o     o 

sequence of alternatives   : 9 = 9 + dm  for some positive r -.mo 

and d. Let N(6) and N*(6)' be respectively the sample sizes re- 

quired by two test procedures T and T*, to achieve the same power 

(1-0) at the same level of significance =<, where 6 is the dif- 

ference 9 -9 . Then, the asymptotic efficiency of T* relative to 
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T is defined as: 

EffCrVr) = Lim [N(6)/N*(6)] 
5^0 ' U.-12; 

Since for the Mann-Whitney U test, 

Lim  Pe ([(iu)*(U/n1a2-E(U/n1n?))][n1ruVar(U/n1n,)]-*<x} = 
Dl>n2*m      2 " 

,  x   2 
= #(x) = (2n)"* J e"*1 dt , (2.13) 

where 9n = dn2   a
11'3 9Q 

= 0. the following theorem due to 

Hoeffding and Rosenblatt [ 9] can be applied: 

Theorem: If for a sequence of test procedures ft ], where t  is 1 nJ        n 
based on a random sample of size n, the following regularity 

conditions hold: 

a) 0n(8j <<*, Lim 0(9) = <X, where 0 (9) is the 
n->» n ° n 

probability of rejecting the null hypothesis, 

b) There exists a positive r and normalizing functions 

u(9) and cKö) such that for any real x and any 

d > 0, 

Lim P (nr[(t - ^(en))/a(9n)]<x}=?(x)=(2TT)-* fe^ dt , 
n J> » n 
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where 0=9+ dn~r , no 

c) n(9) has a derivative n'(9 ) at 9  and n'(9 ) > 0, 

d) o(9) is continuous and positive at 9=9 , o 
then 

pit* mr" 
n •* » 
Lim 0n(9ofdn~

r) = |[d ^(9Q)/a(9o) - \J    , (2.H) 

where i(-\^)  =«. The efficiency index N(6) of the test 

based on t  hai the expression 

N(6) =[(X0(U9) CT(9O)/(6 n'(90))]
l/r . (2.15) 

The Mann-Whitney test procedure with 9=0, satisfies all 

of the hypotheses of Hoeffding and Rosenblatt's theorem with the 

exception of part (c), y, (9 ) > 0 . In this case 

»    (90) = - (nin2/2)e 
-0 o 

which for 9=0 becomes o 

n'(0) = - (n^jj/2) < 0 

However, the restriction that y/(9 ) > 0 is not necessary in the 

case of r = •£, since Pitman's original result for r = £ does not 

require this restriction on p, (9 ), [18] . Since for the Mann- 

Whitney test procedure r = £, we can ignore the restriction on 

li'(9 ) and apply the above theorem with 9=0. This yields o o 

¥5> = {(VX9)[nln2Var(U/nln2)oJ*[6E'(U/nln2)oJ'1^2 ,   (2.16) 
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where E' (ü/n^) denotes differentiation with respect to 9 and 

the subscript   means evaluate at 6=0. 

Now, for the exponential alternatives with a shift in the 

location parameter, (2.16) becomes 

Nx(6) = [(\0<Hg)2((n1+n2+l)/l2)^ 6"
1]2 

2%-li = [(Xc<+Xp)'
:(n1+n2+l)(3 ^)~l] 

(2.17) 

Similar results have been derived for Mood's and Massey's 

tests, and the likelihood ratio test by Chakravarti, Leone, and 

Alanen [ 3 ]. Their results are summarized below: 

For Mood1s test procedure based on the median 

N2(6) = [(Xc<+\9)
2(n1+n2)(n2 A2)"1] 

For Mood's test procedure based on the first quartile 

N3(6) = [(\o(U0)
2(n1+n2)(3n2 62)"1] 

12.18) 

(2.19) 

For Massey's test procedure based on the first quartile and median 

2N-1I N4(ö)    =    [(n^) f (3n2 ^)"x]     , 

2 
where    A      is a solution of the equation 

OB 

J    f(*2,  A2)   dX
2    =    1 - 0   , 

m 

(2.20) 

(2.21) 
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and f is the non-central chi-square density function with two 

degrees of freedom. 

For the Likelihood Ratio test procedure 

N*(6) = D*/6 , (2.22) 

where D* denotes the solution of H(D*) = 1-0, 

and H(d) = lim 0 (6 +dn"r) 
n*- n ° 

It is easily seen that the asymptotic efficiency of all of the above 

tests relative to the likelihood ratio test is zero, since 

**{6)/\(6)  ■» 0 as 6 -> 0 for i = 1, 2, 3, 4 •     (2.23) 

Likewise, the asymptotic efficiency of the Mann-Whitney teat relative 

to the median test is 

Eff(Tl,T2) = NjM/N^e) = 3(n1+n2)[n2(n1+n2+l)]"
1» 3/^ 

(2.24) 

The asymptotic efficiency of the Mann-Whitney test relative to the 

test based on the first quartile is 

Eff(Tl,T3) = N^öJ/N^ö) =(11^) [n2(n1+n2+l)]"
1
:5s n^

1 

(2.25) 

Also, the asymptotic efficiency of the Mann-Whitney test relative to 

Massey's test based on the first quartile and the median is 

Eff(TrTA) = N4(6)/N1(6) = (n1+n2)A
2[n2(n1+n2+l)(\o(+\B)

2]"1 

P*   A2 [n2(Xo(f\g)
2]-:L 

(2.26) 
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2.A   Further Extensions. 

First, the results given in the above equations can be 

tabulated for various sample sizes, and a comparison can be made 

to determine the asymptotically most efficient test procedure 

among those considered. 

Second, the above tests can be compared with the standard 

t test for detecting a shift in the location parameter, when 

the usual assumption of normality is made. 



CHAPTER III 

EXACT POWER OF SOME TESTS BASED ON A GENERALIZATION OF MOOD'S 

STATISTIC 

3.1 Introduction. 

In many practical situations, such as life testing, the 

sample observations arise in order of their magnitude, so that the 

first observation X, is always the smallest, the second observa- 

tion X, is second smallest, and so on. To discriminate between 

two populations on the basis of two such ordered samples, many rank 

tests are available. Of them, Mood's test [16] based on the median 

of the combined samples and Massey' s extension of Mood1 s test [15] 

based on fractiles, have much to commend themselves as quick tests. 

The exact power of these tests against the alternatives of exponen- 

tial and rectangular populations for the case of two populations has 

been investigated in detail by Chakravarti, Leone, and Alanen [13]. 

The purpose of this investigation is to extend the results available 

for Mood' s two sample test to the case of discriminating among c 

populations on the basis of c ordered samples. The corresponding 

extension of Massey's test is investigated in a subsequent chapter. 

3.2 The c Sample Problem. 

Let I Y (i> Y (i)      Y 
X  Al  ' A2  ' ••" Xn 

(i) for i = 1, 2, ..., c be 

c sets of independently distributed random variables with continuous 

cumulative distribution functions F. , respectively. We wish to 
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test the hypothesis 

Ho : Fx(x) =F2(x) = ... =Fc(x) , 

against the alternative 

Ha : F^x) > F2(x) > ... > Fc(x) . 

c 
Denote the size of the combined sample by n = 2 n. and 

i=l i 

for the sake of simplicity assume that n = 2r + 1, where r is an 

integer. Let Z,^ < Z,^  < ... < Z,   s    be the ordered combined 

sample. Z = Z/+1s denotes the median of the combined sample, and 

u. denotes the number of observations in the i   sample less 

than Z(i=l, 2, ..., c). 

Thus, the observations can be arranged to form a 2 by c 

contingency table as follows: 

Number in Sample below and above Median. 

Category 1  Sample 2  Sample • • * 
th _  . 

c  Sample Total 

Less than Z 

Greater than or 
equal to Z 

Ul 

nl "ul 

U2 

n2 " U2 

• • • 

u c 

n - u 
c   c 

r 

r + 1 

Total nl n2 • • • n 
c n 

Subject to restrictions 

Zu, = r ; 
i=l X 

c 
Z  n. 

i=l 1 
(3.1) 
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We can define a statistic T by 

c 

T = =   £   J(ui-rni/n)2(rni/n)-1 + [^-^-(r+D^/nftCr+D^/n]"1^ 
i=1 (3.2) 

Then a test of size   <X   based on the statistic    T    is as follows: 

reject   H     if   T at t_    , 
O o(  ' 

accept H  if T < t_ , 

where t, is defined by Prf T at t, I H } s <x 

This problem is equivalent to testing a 2 by c contingency 

table uith fixed marginal sums for independence between columns. 

3.3 The Null Distribution. 

We need to develop an expression for the density function 

h(u1, ..., u , z) of U,, (i = 1, 2, ..., c), and Z. Let us 

assume that the median Z is from sample j, then the probability 

?,(u,, ..., u , z ) of obtaining these values in the contingency 

table is given by 

Pjd^,   ..., uc,  z)  = (nj-UjjKJ   TT[(Fi(z))Ui(l-Fi(z))ni ^j ) • 

dFj(a) 

[l-FjU)]"1   —£-   , (3.3) 

c   /n \ 
where    K =   IT |    x 

i=llui 
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From Equation • (3.3), we obtain 

c 

hd^, ..., uc, z) = ^Pjdtj^, ..., uc, z) 

= I  (nrUj)K{ TT [(Fi)
Ui(l-Fi)

VUi]}[l^(ir 
j=l       i=1 

dz . 

(3. A) 

The nail distribution ^(u^ ..., UQ) of Uj,, (i = 1, 2, ..., c), 

under the null hypothesis is derived from h(u,, ..., u , z) by 

substituting 

F^z) = F2(z) = ... = Fc(z) = F(z) 

in (3.4.) and integrating the resulting expression over the range 

of z. This yields 

9o(ult  ..., ue)  = K(r+1)    J   f   (1-F)r dF 

TT 
i=iVui/J 

fn\-l 

(3.5) 

This result is in agreement with that obtained by 

Chakravarti, Leone, and Alanen [13]. 
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3.A   Power Function of Median T Test Against the Alternative of 

Translation in the Exponential Population. 

Here the alternative hypothesis considered is: 

-(x-a.) 
?L(x)  = 1 - e     ,x>ai , 

= 0 , x < &L    , 

where ai+l - ai ^ ~ lf Z* "'*  c"1^ al > ° 
(3.6) 

The only necessary requirement is that a > a. (i = 1, 2, ..., c-1). 
C    X 

The joint distribution of the U.'s is obtained by sub- 

stituting (3-6) in the expression for the joint density function 

h(u,, ..., u ,z) given by (3«4) and integrating over the range of 

z. The range of z can be reduced to a, < z < • , since all of 

the F.'s are zero for z < a., . This gives us 

Pr{Ui = uL  | i = 1, 2,  ..., c] = 9a(u1, ..., uc) 

= £ (iij-UjjK J* { 4 [Fi(z)
Ui(l-Fi(z))

ni"Ui]j[l-Fj (z)]ldFi(z)t 

j=l      z=aTi=1 1 (3.7) 

Now, we can write 

*2   *3 

I. ■ J. +J. +-+J. 
al    al   a2 

c+1 
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and obtain 

<P. l(u1, ..., uc) = [st(u)  , (3.8) 

t=l 

where 

c       at+l 

3t(u) = ^(nj-Uj)Kj {r[F^
i(l-Fi)

V^}[l-Fj]-
1dFj 

j=l      z=a. 
(3.9) 

Since Fi = 0 for t+1 < i < c, St(u) will be zero unless u. = 0. 

Also, all terms for j > t will be zero, since F, = 0. Thus, if 

we define u,+1 a 0, (3.9) reduces to 

*t+l 

St(u) 
t  u.     n. -u. 

j=l z=aJ. 

[1-Fj]'1 dFj ,      (3.10) 

where 6. . is the Kronecker delta. 

Let 

Vs e 
■(at-ai) 

Yi,t=1-\t  . (3.11) 
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Then we can substitute 

Fi = l  " %,t(1-Ft^ = Vift + \t*t.  for at < z < at+1, 1 <i< t, 

(3.12) 

in (3.10). This gives us 

St(u) = I (nJ-uJ)K(Jt\+1,o)     J  ^V^t» *> 

2 (n,-u, )-l 

(JA't   j1"«1 -t     • (3.13) 

Expanding    [1-7^ tU-Ft)]        by the binomial theorem, we get: 

St(u) = K I 
J=l 

(nJH1J) [ 
c 
TT 6. 

,i=t ui+l'° 

ul ut      t 

y... y I TT[(-Dqi 

qi=0      qt=0 l 

H. 

^\   /    \    ,Ft(W ni-ui^ii ri 
i,t    j 

Z (ni-ui+qi)-l 

(3.U) 
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This expression can be integrated to yield: 

St(u) = K I (VV 
J=l 

\ 

ui      ut. 

i=t ui+i»° %    n tUli=i L       Jq.=0  Qx-O 

n.-u.*ü /u. \ , f  * (VW1 r t      1-1 

(3.15) 

For the case in which t = 1, (3.10) reduces to 

Sx(u) = (n1-u1)K 

-i  a 

AV 
2 u,     n,-u,-l 

J 'l^1-^ 
IT. dF1 , (3.16) 

z=a. 

which can be integrated to yield 

S1(u) =K 

,nrui 
>qifnru 

",6u<+1,0      H'U     \q.    i(VUl^l)Yl,2 ^W^ [l-l   l+i. jq -0 \  - / 

(3.17) 

Consider the special case in which a, = a_ = ... = a  , =0 

and a = a > 0. Let c 

-a 
\,c=\,c=  ~'=\-l,c=^ = e    >    W —=Fc-lsF' Fc=G' 

c-1 
ü = Zu, 
C  i=l 1 

c-1 
N = In., 
C  i=l 1 (3.18) 
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then (3.7) becomes 

U N-O-lu n -u 

*a("c'uc) = (V"c)K J F C(1"F)  ° "° VU-Gf °    ° dF + 

z=0 

U N.-U.  u n -u -1 
0    c (no-uc)K JF 

C(l-F) C   °G C
(1^I) 

z=0 

This can be written as 

dG    . 

(3.19) 

9a(üo,uc)  = (Nc-r)K6u >Q   jV (1-P)  ^    dF + 
C      z=0 

• U N -U -1  u n -u 
(N -U )K    [ F C(l-F)  c    c    G  C (1-G)   c    c dF + 

C       C J 

z=a 

U N -U    u n -u -1 
-    -     - c    c (nc-uc)K   J F C(l-F)  C    CG C(l-G) c    C      dG 

z=a 
(3.20) 

Substitute    F = l-T)(l-G)  for a < z < « ,  in (3.20)  and obtain 

N -r c 
qi/Vrl ,r,        . rV^i *A'V = K \,o   I <-« \C

qJ <V~»i> J/ dF + 

qx=0 

N   /      \ 

"-n"-n (3.21) qj=0 q2=0 
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which upon integration yields 

°F   ^l(VrV=     s r+ql+1r 
C   - -A        N 1 qj_=0 

»c^l 
^2MN r. .  .,-,-! 

qi=0 q2=0        \ 1/ \ 2 / 

(3.22) 

If c = 2, this result agrees with that obtained by Leone, 

Chakravarti, and Alanen [13]. 

These results can be used to compute the power of the test 

for the case of the exponential alternative by first defining t  by 

Pr{ T > t^ | Ho } > c< , 

where the probability is evaluated using (3.5). The power is calcu- 

lated from  Pr{ T > t | H } = 2 cp (u., ..., u ), such that 
ui 

T > t . 
- °C 

3.5 Power Function of the Median T Test Against Alternatives of 

Change in Location and Scale of the Rectangular Population. 

In this case, two sets of alternative hypotheses will be 

considered, namely: one in which the location parameter changes and 

another in which the scale parameter varies. 
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3.5.1 Change in Location of the Rectai. *ular Population. 

The alternative hypothesis is 

F^x) = x - a^      for a±  < x < 1 + &i , 

= 0 

= 1 

for  x < a. 

for  x > 1 + a. , (3.23) 

where again the populations are ordered according to their location 

parameter: 

0 < a. <.a0.< ... < a i c c  . 

The joint distribution of the U.'s is obtained by substi- 

tuting (3.23) for F±    in the expression for the joint density 

function h(u^,   ..., u , z) given in (3-A)  and integrating with re- 

spect to z. The range of z can be reduced to a, < z < 1 + a , 
I  -  —     c 

since all of the F,'s are zero for z < a, and one for z > 1 + a . 
lie 

This yields 

Pr{ Ui = Uj_ | i = 1, 2, ..., c } = cpa(Ul, ..., uc) 

1+a. c c 
= Bnj"Uj)K J t 5 tFi(z) ^l-ty*)) r i]}tl-Ti(z)]-1dFi(z). 

j=l     z=a. 
(3.24) 

The method used to evaluate the integral in (3.24.) depends upon the 

relative sizes of the a^s. In this section we will consider only 

one situation, that is perhaps the most interesting. However, any 

other possible situations can be handled in an analogous fashion. 



&   < a. +1 
c  l 

For the developments in this section we will assume that 

(3.25) 

Then the integral in (3.24) can be partitioned by dividing the range 

of z into 2c-l pieces. This yields 

cpa(U;L, ..., uc) = £ { Pt(u) + Rt(u) } + Qc(u) ,    (3.26) 

c      at+l   r -. ^ 

j=l      z=a. u_1 
[1-Fj]-1 dF^z) 

(3.27) 

c       " at+l 

J=l      z^+a.11"1 

u.     n.-u. 
F/d-F.) x x K^ dF.(z) 

(3.28) 

C 1   „  r -I 

I(nruj)KJ    " LFi (1"Fi} 
j=l      z=a l 1_J- 

[1-Fj]"1 dF.(z) 

(3.29) 

Consider Pju) . Since Fi =0 for 1 + t < i < c, P (u) 

will be zero unless ^ = 0. Further,all terms for j > t will be 
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zero. Thus for 1 < t < c, (3.27) reduces to 

Pt(u) = K, 

.       /j=l     z=a * 

[l-F.f'dFj # 

Let 

"i,J = aj"ai '        vi,j " ^i,j 

then we can substitute 

v,   , - 1-j»,   .  , 

(3.30) 

(3.3D 

Fi= «*l,t+ Ft >    1"Fi= vi,t" Ft '    for \ <z < Vi >    1 < i < t , 
(3.32) 

in (3.30)  and expand the resulting binomials.    This give us 

Ul Ut-1    V»! nj-l"Uj-l 

\ /j=i qx=o    vr° V0    vj-i=0 

n.-u.-l    n...-u.,,      n.-u. 3 j    j j+1    j+1        t    t Zv, J J JrJ-JTX u 0 A    V.     /      v - - , v 

'3-1 ^CTrCT-ro* 
F (a      )        t_1, % 

l^Kt vi,t   Ji  J0 
Ft dF t . 

(3.33) 
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By noting that 

(3.33) can be integrated and simplified. This yields 

Ul Vl    nl"ul      Vut * 
?t(u)=KLL\^ - £   £ - £ (-DifiVi 

\ /q^o    q^O  Vl=o     vt=o 

* I ut 

3=1 J 

V.f/WV1   t-i 
[ut+ 2 (qi+vi)+vt+l]'

i
> 

(3.30 

for t = 2, 3» ..., c-1 .  P,(u) is easy to handle and is given by 

Pl<U>SKfev0)^ (T^^^^Wir1   m 
(3.35) 

Similarly (3.28) can be simplified if we note that F. = 1 for 

i < t and hence (3.28) will be zero unless (n.-u.) = 0 for i < t. 

Also, all terms for j < t will be zero, and for 1 < t < c-2, (3.23) 

will reduce to 
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JL 

Rt(u) t- 
1+at+l 

'j=t+l z=l+a 

[l-F^^dFj    # (3.36) 

If we substitute 

Fi = ^i,t+i + Ft+i '    i-'i = vi,t+i " Ft+i > <3-37) 

for       l+at < z < l+at+1,      t+1 < i < c,    in (3.36) and expand the 

binomials, we get: 

't+2 uc    Vl^t+l Vuc i 

Rt(u) 

t+2 w      Mc "    "t+1 

(-1) 
=0 

i=t+l 

/nt+i-
ut+iV i f ui"qi vwn 

I(nrvV/vj, 
^j=t+i 

t+i 
i Vi*zwW^i 

J'- t+1 dF. 

"t,t+l 
• t+1    , 

(3.38) 

since    v^   .  = F.(l+a^)   .    This expression can be integrated to yield 
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+ t+2 c    t+1    t+1    c    c 2   v. 

t+2 "    Mc w      "t+1 "      c 

.i=7+2^iy\vi )JV   v-i JU+2 

ui-qi    ni-ui-vi 

_^i,t+l vi,t+l } 

5>rurv.)/Vj) 
Lj=t+1 

t+1 1-v 
u+n+i=t4qi+Vi)+Vt+i+11 

t,t+i K+i+I(Vvi) + 

i=t+2 

vt+l+1J 
-1 

(3.39) 

Also 

Rc-1^ 

r+1 ^ 
/C_1 \   n V    /   . n\ r        U   +V   +11 

\i=i Wy/^      KCA   c-1'c -I  c c 

[r+l-vc] (3.^0) 

In a similar fashion using (3.31)  and (3.32),  (3.29)  can be 

integrated and [-simplified to give: 
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u, u    ,    n«-u,    n -u ^ 1 c-1      11      c    c 2 v. 

W*Z   -   I I    ...I   (^i=1 
q
l=0     Vl=0   vl=0     vc=° 

'Vuci C-1      U1Hll      ^-U^ 

c-1 

V "l,c -••-J 
c-1 

i=l 

-1 

I(nj-urvj)/vj,< 
Lj=i (3.-U) 

If we consider the special case in which    a. = ... = a
e_i = 0 

and    a    = a, where    0 < a < 1,    and let 

•*l,c = *2,c =  *•• =*c-l,c =» = *    ' 

F.   = F_ =  ...  -- F    ,   = F ,      F    =C-  , 1      '2 c-1 

c-1 c-1 

"c =   Eui  »        5c=   Ini    ' 
i=l i=l (3.42) 
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then (3.24) can be written in the form: 

,a _    N -r-1 c 9a(Üc,uc) = K(Nc-r)5u jQ J Fr (1-F) C    dF + 

z=0 

„1 U    N -U -1 u    n -u 
K(N -UJ  f F C(l-F) ° C G C(l-4) c c dF + c c  j 

z=a 

iU    N -U  u    n -u -1 
C(n -u )  f F °(1-F) C C G C(l-G) C C  dD + 

z=a 

1+a 
u    n -u -1 

c 0 K(VV ÖN-Ü ,0 JG C(1^) C °  * c c z=l 
(3.43) 

Now following a procedure analogous to that used in the general 

case in which we substitute for F', expand and integrate, we 

get: 
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9a(Uc,uc) 
„ V.7N -r\ r+" +1 _ 

= Köu ,0   I (-1) Vja [N.-r-v^tr^l]-1 + 

c    c    c    o    c +V/U\/N _jf\ /n _A   Ü -q. 

LI A"11 WAV)**1 
q^O v1=0   v2=0 

(1-a)  C    C    c    1    2    [u^^+l]-1« N^-v^/U-a) + 

n -u 

c    c    v =o \ X / 

[1 -(1-a)  °    *    Jt^^+l]-1 

3.5.2    Change in Scale of the Rectangular Population. 

The alternative hypothesis is 

(    F^x)  = x/Qi  ,    0 < x < 9£    , 

= 0        ,    x < 0 , 

= 1        ,    x > 9. , 

(3.U) 

(3.45) 

1 1 
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where the scale parameters are ordered as follows: 

o < e, < e0 < ... < e . 

The joint distribution of the U's is obtained by substi- 

tuting (3.45) in the expression for h(u,, ..., u , z) given by 

(3.4) and integrating over the range of z. The actual range in 

this case is 0 < z < 9 , since all of the F.' s are zero for 

z < 0 and one for z > 9 . Thus we obtain: c 

M \ - «i  I  i = 1» 2,  ..., c } = «PgO^,   ..., uc) 

= i (
VV

K
 fix 

J=l z=011 1 

ui ni"ui 
[l-Fjl^dFj     # 

(3.46) 

The range of integration on    z    can be broken into    c    pieces.    This 

will yield    c    integrals,  and (3.46)  can be written as: 

c-1 

W   "•' V  =Qc(u)   +   IRt(u)     ' 
t=l 

(3.47) 

where 

c 9, 

Q  (u)  =7 (n.-u.)K  f[  n 
,3,     J    J    __Ji=l j=l z=01' 

Vl 

u, n -u 
Fi   (1"Fi} [1-Fj]       dFj   ' 

(3.48) 

Rt< 
j=l z=9+

l U 

[l-Fjl^dFj     . 

(3.49) 
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If we let 

•i,j = V9i ' (3.50) 

then (3.-48) can be simplified if we substitute 

Fi = *i,lFl '  f0r ° - z - 91 '  1 < i < c '     (3.51) 

in (3.48), expand the binomials and integrate. This yields 

n,-u,      n -u :; 11       co       2 v 

%M 
vl=0       vc=0 \     / 

r c \    c 

I[(nj-Uj-Vj)ej,i] [r+Ivirl 
1
 j=i ;   i=i (3.52) 

Following a similar development, (3-49) can be simplified, if we 

note that (3.49) will be zero unless (n.-u.) =0, 1 < i < t since 

Fj, = 1; i = 1, 2, ..., t . Thus for 1 < t < c, (3.49) reduces to 

V 
c      t      t+1r   r 11 

[1-FJ"1 dF JJ    j . (3.53) 
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Again we can substitute 

Fi = €i,t+lFt+l ' 9t < z < et+l ' t+1 < i < e ,   (3.54) 

into (3.53)» expand and integrate to yield: 

nA .-i-u. .,    n -u i; t+1    t+1     c    c       2 v 

Rt(u) 
v ' vt+r°    V° L    x i J 

c 

1j=t+l ; 

1-c 

Z (u.+v. )+llr   c 
i=t+l x    x 

t+l,t I (Vvi)+1    , 
i=t+l 

(3.55) 

where    Ft+1(et) = «t+1>t   . 

If we consider the special case in which 

8, = 9~ = ... = 9 , =1 and 9_ = 9 > 1 , 1   «t        c-x c 

and let 

(3.56) 

F1 = F2= '•• =Fc-l = F '  Fc=G ' 

U 

c-1 

c   Eui ' 
i=l 

c-1 

h = L ni ' (3.57) 
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then (3.47) reduces to 

^c~^e    n ~u /-   -\ 
Vi+vjN -U i/n -u \ u +v- 21   c    ci     c    c /, /.,  c    2 VVV=K I       5>>X  \ij\l. °](Va) vr°   v° 

[ (Nc-Üc-V;L) +(nc-uc-v2)/e] [r+v1+v2fl]-
1 + 

n -u 
v,/n -u \ u +v,+l 

I,^,o I'"« 'Ul'Vtt'WV»)1 l )• K6n   s 

V° 

IV^+ir1 ,       (3<58) 

using techniques similar to those used in the general case. 

Again these results can be used to compute the power of the 

test by first defining t  by 

Pr{ T > t^ I Ho } < « , 

then the power is computed from Pr ( T > t | H ) = 

2 m (u,, ..., u )  such that T > t  . ,. ■ a x       c - o( 
ui 
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3.6 Results. 

The exact power of the T statistic has been computed for 

the case of three samples using various exponential alternatives. 

These results are presented in Table 3.1 for total sample sizes of 

11 and 15. Since the computations were performed in single preci- 

sion arithmetic, the values computed for the sample of size 15 may- 

have errors as large as + 2 in the third decimal place as indicated 

by the cumulative sum. 

The power of the test, in general, increases with a positive 

shift in the locations, especially when the test is unbiased. How- 

ever, several cases can be noted in which this trend fails to occur 

indicating that in these cases the test is biased.  (For example, see 

Table 3.1 for n = 11, a±  =5, n2 = A,    and « = 0.0476.) This ef- 

fect seems to occur frequently when c< is very small. An analysis 

of the complete distribution of the T statistic indicates that the 

actual distribution becomes highly "peaked" in addition to shifting 

in the positive direction when the location parameters increase. 

This means that the actual tail area for small c<'s can decrease 

even though the distribution is shifting in the positive direction. 

3.7 Further Extensions. 

The computational results presented in Table 3.1 can be ex- 

tended to larger sample sizes and to other combinations of n,, n_, 

and n_. The accuracy of the results can also be improved by per- 
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forming all of the computations in double precision arithmetic. 

Similar tables can be computed with rectangular alternatives. The 

results can also be extended to more than three samples when more 

efficient computational equipment is available. 

Similar expressions for the power of the test can be de- 

rived for a set of exponential alternatives with a change in scale. 

Also, extensions similar to those indicated in Chapter I may be ap- 

plied to this test. 
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CHAPTER IV 

EXACT POWER OF SOME TESTS BASED ON A GENERALIZATION OF 

MASSEY'S STATISTIC 

4.1 Introduction. 

The exact power of some tests based on Massey' 3 statistic 

for the case of two samples has been investigated by Chakravarti, 

Leone, and Alanen [13]. The purpose of the investigation in this 

chapter is to extend their results to the case of discriminating 

between c populations on the basis of c ordered samples. 

A.2 The c Sample Problem. 

Let [X^,  X2^, ..., Xn ^ }  for i = 1, 2,  ..., c be 

sets of independently distributed random variables with continuous 

cumulative distribution functions F., respectively. We wish to 

test the hypothesis 

H0 : Fx(x) = F2(x) = ... = Fc(x)  , 

against the alternative 

H : Fx(x) > F2(x) > ... > Fc(x) a 

th c 

Let n. denote the size of the i  sample, and n = 2 n, , 
i=l 1 

the size of the combined sample. For simplicity, we will assume that 

n = Ar  + 1, where r is an integer. Also let Z, and Z~ denote 

respectively the first quartile and median of the combined sample. 

Let U, . and U? . denote respectively the number of observations 

in the i   sample less than Z,  and the number of observations 
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in the i   sample that are greater than or equal to Z, but less 

than Z2, i = 1, 2, ..., c. The results for the combined sample 

can be arranged in a 3 by c contingency table shoving U. , the 

number of values from the ith sample in the tth interval 

(i = 1, 2, ..., c; t = 1, 2, 3). This table will have the follow- 

ing form: 

Number >f observations less than the first quartile 

and udtween the first quartile and the median. 

Intervals 1  Sample 2  Sample • • • 
th 0  , 

c  Sample Total 

1. x < Z1 

2. Zx < x < Z2 

3. x>Z2 

Ul,l 

U2,l 

U3,l 

Ul,2 

U2,2 

U3,2 

• • • 

• • • 

• • • 

Ul,c 

U2,c 

3,c 

51 = r 

52 = r 

S =2r + 1 

Total nl n2 • • • n c n 

where 

U3,i = ni "ul,i "u2,i > i = 1» 2, ..., c , 

To test the null hypothesis 

H0 : Fx(x) =F2(x) = ... =Fc(x) , 

the usual chi-square statistic, T, based en the set { u   } may 

be used. We reject HQ for large values of T, where the statistic 

T is defined as follows: 
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c  3 

T= I E Ki - ^^/(nivw . U.1) 
i=l t=l 

The test rule based on the statistic T is: 

reject H  if T > t, , 

accept HQ if T < t, 

where t^ is chosen so that Pr{ T > t | H } < « , and <X i3 the 

preassigned level of significance. 

4-3 The Null Distribution. 

Let PjjC^ j_= ut i], Z1 = z1, Z2 = z2) denote the Joint 

probability density of [Ut ±],    Z±  and 1^    when Z1   belongs to 

the i   sample, and Z2 belongs to the j   sample, i,j=l, ...,c. 

Then the expression for P.   is given by: 
*» J 

,        , dF.(zJ dF.(z_) 

3,m . 

(4.2) 

Hence, the joint density of the U.  's, Z, and Z_ is given by 

c   c 
h(u.  , z  ,  z ) = z   Z P 

i'J  *  2   i=1 J=1 ifJ  • (4.3) 



66 

The null distribution <PQ(u  ) of the U± ,'s, (i,j = 1, 2, ..., c), 

under the null hypothesis is derived from h(u, ,,z,,z_) by substi- 

F1(z) = F2(z) = ... = Fc(z) = F(z) 
tuting 

in (4.3) and integrating the resulting expression over the range of 

z^ and z_. This yields 

9oK,j)=     11    hK,j»vz
2) dzi dz. 

-•<z,<z_<« 

1 F(z2)   r r-1 
= Kr(2r+l)J* J" [F^)] [F(z2)-F(Zl)] [l-F^)] dF(2l)dF(z2) , 

where 

K =  IT 

(TO 

m 

2; 

(4.4) 

m=l\ul,m' u2,mJ 

Letting Qx = F(z;L)/Ffz2) in the innermost integral, (4.4) can be 

integrated. This yields: 

Vui 1* = Kr(2r+1) B(r+1, r) B(2r+1, 2r+l) , o' i,j 

where B(i,j) = [(i+j-1)'.] [(i-1) I (j-1) • ] 

This expression can be rewritten in the following form: 

U.5) 

U.6) 



67 

For the special case in which    c = 2,  U.6) reduces to 

f     2r+l Vi.i^-^3^^)   ■ (4.7) 

which agrees with the result obtained by Chakravarti, Leone, and 

Alanen [13]. It should be noted that the statistic T defined by 

(4.1) under the null hypothesis is distributed approximately as 

chi-square with 2(c-l) degrees of freedom. However, the exact dis- 

tribution may be calculated from (4.6) and (4.1). 

4.4 Power Function of T Test Against the Alternative of Translation 

in the Exponential Population. 

The alternative hypothesis considered here is the same as 

that in Section (3.4), namely: 

-(x-a.) 
Fi(x) = 1 - e     , x > ai , 

= 0 

where a 

, x < aA , 

i+1 > a^ (i = 1, 2, ..., c-1), a, > 0. 
(4.8) 

Let 9 (u. .) denote the probability Prf U. , = u. .., 

t = 1> 2, 3, i = 1, 2, ..., c] , when the alternative hypothesis 

H  is true. Then cpo(u, ,) is given by: a a 1, j 

da. ^ij  = II        h(ui,j'  ZV z2>  dz1^2    ' 
-«<z1<z2<00 (4.9) 
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where *i\ty  z^ Sj) is given by U.3) . 

The integration takes place over the appropriate ranges of 

z^ and z2> These ranges can be reduced to a. < z. < z~    and 

al - z2 < " ' since a11 of the Fi'3 are zero for z < ai* Thus» 

(A-9) can be written in the form: 

c      c      « z 

*.(ui,j>=KE I I   J  v^h^w-w*2*i,m • 
i-l j-1 z2=ai   zi=ai 

u,    -5 
[1-Fm(z2)]3^    j'm}u2>iu3)jdFi(Zl)dFj(z2)     > 

(4.10) 

Now, we can write 

"    Z2        a2 Z2        a? f a2      z2n 

(J. 'I s >i Is >s 
al al       al al        «2   Lal      ^J 

r  r*2 r*21 

a
cLal 

and obtain 

»a<uifJ>  = II   ^s,t+   1^ 
1   <t<S<C 3=1 

U.ll) 

where 

Qs,t = K 

c      c      a  ,.     a. ... ,s+l    „t+1 

I       I       J J        Pi,j   dFi(Zl)    dF
j(

Z
2)>    1<   »<   8<   C, 

(4.12) 

i=l j=l z2=as z1=at 
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c    c    Vi   h 
3s,s=K   III        I     'i.jW")^1^^ 

i=l j=l z0=a. z, =a " 2     9     1s 

and 

u, u0    -6. 
1>mtv t, \ _ i? (* M 2>m   1»°  . 

"    n-i 

u,   -« 
[W.(.2)]3-   J'B}u2tiu3J    f 

with   ac+1 = - . 

In Qg t, Fi(a1) =0 for t+1 < i < c and F (a2) = 0 for 

s+1 < j < c . Hence, for t+1 < i < c and s+1 < j < c, Qa   will 

be zero unless u, . = 0 and u_  = 0. Thus, if we define 
1,1 <.ti 

ux +1 = u2 c+1 ■ 0, U.12) and U.13) reduce to 

fC       1 Q . =K n 6     - 
c 
n 6 

-, t  s  ag+1 at+1 

_ u- ,.,0 
m=s 2,m+l' 1=1 J=1 V*i Vt 

VWUl'"[W-V*i>]U2'""Vl5 L[W2,"i m=l m=t+l 

jjll-^^)]"3"1"6"'^ u2>iu3)j dF^) dFj(z2)  f 

U.H) 

X 
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Q       = K 
3,3 

rc -I    s      s     as+1     Zg 

J L~l i~l 2
2-

a3 zra
3 

u„  _-«. u, _-«_ 
**W ^V^W 2,m   m'iU-Fm(Z2)]3'm   »'*} 

m=l 

U2,iu3,J dFi(zl} dFj(22} (4.15) 

First, consider (4.I4) and let 

V = e 
-(at-ai) 

Yi,t = l ~  \i 

Chen, vie can substitute 

W   = X - V^-W)   = Vi»t + \,tFt(2l^  at < zl < aUl    , 

Fi(22}   = 1 - V(1-W>   = Vi,t 
+ VW'  at  < Z2 < Vl    , 

1 < i < t    . 

(4.16) 

N. 
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in U. 14).    This give us 

*.,t = K 

m=t ul,m+l'° Lm=s U2,m+l'U 
2u2 i i=l ZfX 

as+l ^„t+lft-l 

2    s 

[Ft(z2)-Ft(Zl)J 

Zu.    -L 
m=l 2,m 7    JJ   F ,    ^A \    U    F(z-)     »   } u,  , 

U=t+i m 2     j 3»j 

{Jl[l"F-(Z2)]U3,m"6m,J} dFt(2l} ^^     . (4.17) 

l,m Assuming that    t > 1,    we can expand    [y      + T\    .F.(z,)]     '       for 

t 

1 < m < t, [F^ZpJ-F^z,)]       , and perform the innermost 

integration. 



This yields 

%,t - K 
c 

m=t ul,m+l'° 

c 

m=s *u2,m+l'0 

s     Ul,l       ul,t-l A2,t 

I   I -  I     I 
J  j=l q^O qt-l

=0    W=0 

^hAi _ 2,111%      l,m~T3   l,m j 
'U3,j ' 

t-1 
t-1 

u-.  S 2 q_+w+l as+l,. ->A„ ,-w-l 

m=l Vs 

{i^^iLl11-^^3""^}^', 
U.18) 

where   A . . = Zu.  .  When s > t+1, we can substitute 
i'i      m=l i'm 

FJ(Z2} = Yj,s + ^sW' f0r as < z2 < as+l' ! < J < s » 

(4.19) 

in (4.. 18), expand the binomials, and integrate. Thus, we get 



73 

L 

v =K 
m=t ul,m+l'° m=s U2,m+1'° 

Ul,l       Ul,t-1 A2,t 

I    ".      I       I 
ql=0       qt-l=0 w=0 

A2,fwu2,t+1     U2,s-lA3,s /     W     W 

V°     Vf°     Vl=0v=0 \     '\      '\     * 

rt-i _ 2,m Tii  l,m^Tn / X,mj 
in, t   Ym,\-   I q ']] 

( 

s-1 

m=t+l 

_Tn   2,m Tn / 2,m 
TD,S 

Ym,s    \ q 

s-1 u_ I q. 

m=l ^'s I t's 

t-1 
A    ■ „ T u. .t E q +w+l 
^.t-^t"1  1't m=l m 

h,s Yt,t+i 

t-i   1-1 
u, >2q +w+l l.t _i m ' m=l 

s-1 
u„ + 2 q +v+l 2,3 _. m ' m=t 
Ys,s+1 

r      s-1 
u„ + Z q +v+l 2,3 _.. m ' m=t U.20) 

Starting from (4..17) the results for the cases in which s = t+1 
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and t - 1 can be obtained in a similar fashion and are summarized 

below: 

Qt+l,t 
= K n 6 n 

m=t ul,m+l'U 

'    c 
IT a 

m=tfl u2,m+l,U 

Ul,l     ul,t-l    A2,t 

I-     I I 
«1=0     *t-l=0   w=0 

A„ ,-v A 2,t      "3,t+l / 

qt=0     v=0 \ ̂ 1V)<w 

(A2,t^^t) 
ft"1 

U=i 
_ 2,ni%   ul,m"%(   l,r 
in,t 'm,t m /J 

t-1 
u,   ,+A„   .+ Z q  -q,   -    . 
l,t    2,t      .M m Ht      t      u- q+ 

*- m: 

t-1 

, VSi \t+iK,t+ ^V^ 
1 ^ m=l 

u2,t+l^t+v+1
r ^  ++11-1 

*t+l,t+2 ^tfl+V^ , 

(4.21) 
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1 

%,1 = K 

|ro=l ul,m+l'°J 
n 6 ft 

lm=s u2,m+l'U 

U2,l u2,l-w "2,2     U2,s-1 

I   I    I- I 
w=0   q^O      q2=0      qs-1=0 

t^tfc)fcK~*w ■ 
a-l   u      tqHs-l 

\ ^        ]     " m=l      ' J I m=2 

2,m~qm/u2,i 
m.s V^ 

s-l 
u0     + 2 q  +v+l . 

2'S m=l^ r .I1     .   .-,-1 
ul  i+w+1 «.,0 

Yl,2 ^1,1^      >s,8tr tU2,s+ * V**1! m—1 
(4.22) 

92,1 = K 

m=l Ul,m-KL'° 

c 

m=2 u2,m+l'u 

U2,l U2,l-W A3,2 

E   I   I <-i>^ . 
w=0   q.=0      v=0 

U2,l    A3,2    U2,1"W ui i+qi 

-A-A   ^1    / (,,2.1^1,(A3.2-)^21    Xl-1^1' 

"1,1^2,1^1    ^,2+V^1 

%2 Y2,32    '        I^*»!**1]"1    . (4.-23) 
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If we substitute (4.19) for z, and z_ in (A.15) and ex- 

pand, we get 

Q„  . = K s,s 

c 

m=s6ul,m+P°6u2,E+r° 

1,1 l,s-l 

I - I 
«1=0 Vl=0 

8-1 
IT 

m=l 

u_     +u  '   +q_    u,     -q     /u.    \ 
_ 2,m    3,m  ui      l,m %.      l,r.) 
™>s Ym,s \\ J 2,s    3,s 

s+1 2 
s-1 

"l.S**«« A„      -1 
f    Fs(Zl) "■-1      .;F.(Z0)-FO(Z,)]  "8 

s     <T 

z  =a    z,-a 2    s    1    s 

[l-Fs(z2)]rt3>S-   dFs(2i) dFy22)    ^ 
4.24 

New,  if we let    L = Fe'z.,'"r /=,)]' in the innermost, ir.tsgral 

and  integrate,   we   ;fctr-.;r. 
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Qs,s = K 
m=sÖul,^l'0S,m+l'

0 

1,1      1,3-1 

I  -    I 
ql=0   qs-l=0 

8-1 

m=l 

u- -Hi. +q  u. 

V 
._ m_ +q  u.  -q  /u,  ' 
2,m 3,m m  l,m nm  l,jn 

'm,s 
31 /_) 

A_  A. 
2,s 3,s 

3-1 
s-1      .   s+1    A„ +u, + Z a 

/        --. \    » 2,3  1,S   , -T. 

n=l z =a 
2 s 

[i-y^)]"3'3"1 dFs(z2) 

U.25) 

A, -1 
The factor [l-Fs(z2)] 

J's        can be expanded and the re- 

sulting expression integrated to yield 
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•/ 

Q        = K 
3,3 

n  Ul,l 

(JaV.a+l^S.ia+l^j L 
q,=0 

l,s-l 

z 
q    .=0 ns-l 

( 

8-1 
IT 

m=l 

- 2,m   3,m  Tn     l,rn*m j  l,n 

} "2,s 

\ m=l /   v=0 

s-1 

2,s    l,s m_,Mm 
v m_1        r 

3-1 -1 A2 3^1 s
+2^mfv+I]  x 

(4.26) 

or rewriting the Beta function in terms of factorials one obtains 
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Qs,s = K 

_.  1,1      1,3-1 

.Ä,m+i'°S^r° I - I 
qi=0  Vi=0 

{3;[^3^v:^(u-)]} 

/    3~lx s~.1     A3,s   ik \ 

\    m=l / m=l     v=o    V ' 

3-1 

D-l 

For the case in which s = 1, U.27) becomes 

(4.27) 

Ql,l = K 
c 

m=l6ul,m+l'°
6u2,m+l'

0 
ul,llu2,ll£(ulfl*Z,l

)l] n-i 

v=0      \  ' \    / 

(4.28) 



Also in the case s = c, (4.20) and (4.27) can be simplified 

since the outermost integral becomes a complete Beta function. 

These results are summarized below. 

TT 6 
B=t ul,m+l'_ 

n
Ul,l  Ul,t-lA2,tA2,t-wu2,t+l u2,c-l 

I- I   I   I     I- E(-Dw 

qx=0  qt_1=0w=0 qt=0  qt+1=0 q^O 

-w\ (t-1 

. /(A2,t-W^t) * 
* im=l 

u_ +q  u,  -q /u, 
_ 2,m nm  ljinhn/ l,m 
Vt    Ym,t   l 

m /-/ 

ai,t+ ?. V**1       *-i Dl=l      r    , V     , - -1 
Yt,t+1        fu^ ^  > a ^l- 

t-1 c_i 

K,t^\^r1(2r+l)./u2tC+[qV.  • 
m=l \   m=t / 

(4.29) 
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ul,l     ul,c-2 A2,c-1 A2,c-rw 1,1        l,c-2    2,c-1    2,c-1 '       / v/ \ 

(A, 2,c-rw^c. .x'E^v.:^^")]} 
0-2 

f c-1   u,    ")    q_ n      A«      ,+un      n+ 2 q„-q    , 

lm=l   b'c /   c"1'c    °~1>C 

;-2 

["l.c-l*! V*1]"1 (2r+1)'-(u2,c^c-l^- 
m=l 

.1-1 £(u2,c+2r+Vl+1>*-J . (4.30) 

1,1 1,C-1 

c-1 c-1 

m=l m=l U.31) 
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4.5 Results. 

The exact power of the T statistic has been computed for 

three samples using several sets of exponential alternatives. These 

results are presented in Table 4..1 for total sample sizes of 9 and 

13. Since the computations were performed in single precision 

arithmetic, the error in the computations is rather severe, and at 

times, amounts to + 1 in the second decimal place as indicated by 

the cumulative sum. 

As in the case of Mood's test, the power, in most cases, in- 

creases with a positive shift in the location parameters, but, again, 

several cases can be noted in which the increase does not occur. 

This indicates that the test is biased under these circumstances. 

As stated in Chapter III, this effect can be attributed to a sharp 

"peaking" in the shape of the distribution of the T statistic. 

4.6 Further Extensions. 

Expressions similar to those developed in this chapter can 

be derived for a change in scale and location of a rectangular dis- 

tribution and a change in scale of an exponential distribution. The 

results presented in Table 4-.1 can be extended to larger samples and 

other alternatives. The accuracy of the computations can be im- 

proved by using double precision arithmetic. Also, some extensions 

similar to those indicated in Chapter I can be applied to this test. 
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TABLE 4.1 

Exact Power of Massey's Test for Three Samples with 

Exponential Alternatives: Pr{ T > t | H }. 

13 

a1 = 0 \=°, *1=°, 
»l       °2 t « *j-.l *2= 'I ■2 -.2 

a* = .2 a. = .5 a, = .5 

2        3 13.800 .008 .016 .043 .044 
11.700 .024 .039 .063 .071 
9.075 .056 .091 .128 .154 
8.850 .079 .119 .197 .204 
7.500 .127 .159 .237 .238 

3         3 9.600 .071 .084 .110 .115 

4         3 13.800 .008 .004» .002» .002» 
11.700 .024 .020» .010» .012» 
9.075 .056 .042» .022» .025» 
8.850 .079 .070» .052« .070» 
7.500 .127 .135 .149 .166 

2         4 16.050 .002 .004 .012 .008 
11.718 .007 .015 .053 .046 
11.099 .019 .030 .072 .063 
9.728 .054 .080 .150 .139 
8.932 .073 .102 .205 .178 
8.269 .112 .163 .294 .280 

4         4 16.7U .001 .002 .009 .010 
13.929 .006 .003 .015 ..017 
12.071 .013 .021 .047 .050 
9.657 .055 .070 .111 .127 
8.976 .078 .104 .176 .189 
7.738 .135 .179 .312 .306 

7         4 16.050 .002 .001» .000» .000» 
11.718 .007 .004» .002« .002» 
11.099 .019 .014» .007» .008» 
9.728 .054 .048» .041» .043» 
8.932 .073 .070» .061» .061 
8.269 .112 .100» .076» .097» 

»These values indicate a bias in the test. 
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CHAPTER V 

ANALYSIS OF CATEGORICAL DATA 

5.1 Introduction. 

The usual method of testing a hypothesis concerning cate- 

gorical data is to compute a statistic T, which is distributed 

2 
approximately as x • Then the hypothesis is accepted or rejected 

depending upon the relationship of the observed value of T to a 

predetermined critical value obtained from the x  distribution. 

2 
Since T is only approximately distributed as x » the exact dis- 

tribution of T under several different null hypotheses has been 

computed for both one-way and two-way classifications, and these re- 

suits have been compared with those obtained from the x  approxi- 

mation, in order to determine when the approximation is valid. Also, 

the exact power of the T test has been computed for a one-way 

classification with fixed alternatives, and these results compare 

favorably with those obtained from a non-central x  approximation. 

Extensive tables of the non-central chi-square distribution 

given by 

F(X,v,y = f -  1  ) 2  x _.  dx 

where X denotes the non-centrality parameter and v the degrees 

of freedom, have been computed at Case Institute of Technology [8 ]. 

 /-: 
/' ■ 

/ 
\ "-vi 
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The computational algorithm suggested by Professor N.L. Johnson [lO] 

reduces the integral to a double Poisson sum: 

where 

and 

-  i 

i=0 J=0    X '   X J 

?jW - ^ • 

J > 1 , 

j > 0 , 

i > l . 

5.2 One-way Classification. "* 

In this case the set of n observations is partitioned into 

k cells { Ai | i = 1, 2, ..., k j with n±    observations in cell 

Ai . We will consider the null hypothesis given by 

k 
HQ ! ( Tt^ | i = 1, 2, .,,, k )  such that  2 TT = 1 , 

1=1 (5.1) 

where TT^ represents the probability that an observation will fall 

in cell A^ The usual statistic T is defined in this case by 

:.._/. 
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i=l 
(5.2) 

The observed frequencies, n., will be distributed as the multi- 

nomial distribution 

-1 /k   n.N 
cp0(ni, ..., ry ^(»Df-ffVJ  (^"i1) . 

(5.3) 

Hence the exact distribution of T can be computed from 

Pr ( I ) t | H } = V cp (n,, ..., n.), such that T > t., 

\5.U) 

where t is a fixed value of T. The results for the exact distri- 

bution of T as a function of the sample size, n, are displayed 

in figures (5.1) and (5.2) for two different null hypotheses. The 

approximating chi-square distribution follows the exact distribution 

very closely even for small values of n. 

The exact power of the test with the significance level at 

o(, can be evaluated by considering an alternative hypothesis such 

as: 
k 

Ha : { Pi | i = 1, 2, ..., k }, where 2 pi = 1 ^   ^^ 

Then the power of the test against this alternative will be given by 

Pr[ T > t^ | Ha } =£<Pa(v ..., r^), such that T > t^ , 

ni (5.6) 

J   '■* 
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where   <p     is defined by 

<Pa(n1, ..., v - «■»(iv)-1 (K; 
and t  fä defined implicitly by 

M T > V I H0 1 < « 

(5.7) 

(5.8) 

If we let X be a x  variable with k-1 degrees of free- 

dom, then T will be approximately distributed as X [ 4], 

Patnaik [19] has shown that the distribution of T under the alter- 

native hypothesis can be approximated by the non-central ■%      dis- 

tribution. This fact when applied to (5.6) yields: 

Pr {T > X<K  I Hj^J f(x2) d(X
2)  , (5.9) 

where 

is the non-central chi-square distribution with v degrees of 

freedom and \ is the non-centrality parameter. In our case 

v = k - 1, X = n £ (p. - TTi)
2(TT.)-1 

i=l 
(5.10) 

This function has been extensively tabulated in [ 3 ]. Also, Patnaik 

[19] has shown that the non-central x  distribution can be approxi- 
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, : i 

7 

mated by a central x  distribution by equating the first two 

moments of the distributions. This yields a further approximation 

to (5.6), namely: 

Pr{ T > x^ }~ J g(y) dy , (5.11) 

g(y) = e"*y (y)^'-1 2J^\r(ht)]"1    , and 

y = X2/P» P = (v+2X)(v+\)-1, v1 = (v+X)2(v+2X)"1  . 

where 

Tables (5.1) and (5.2) compare these results of equations 

(5.6), (5.9), and (5.11) for two different sets of hypotheses. The 

approximations to the exact power given by (5.9) and (5.11) are close 

to each other. They both overestimate the exact power of T for 

n < 20 in example 1 presented in Table 5.1 and for n < 15 in ex- 

ample 2 presented in Table 5.1. However, for n = 20 in example 2, 

they underestimate the exact power. 

5.3 Two-way Classification. 

In this case, the set of observations form a two-way con- 

tingency table in which three different subcases can be distinguished, 

namely: 
(i)   Neither set of marginal sums fixed. 

(ii)  One set of marginal sums fixed. 

(iii) Both sets of marginal sums fixed. 

./■ 

n 
■/. 

•> J 

*.,. ^ 
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In each of the subcases, the expression for the test statistic T is: 

r  s 
T = 2  2 (n  - n n ./n)7(n4 n ./n) 

i=l j=l * '* '^ ' (5.12) 

where r denotes the number of rows, s the number of columns, 

n^,    the frequency in the ij   cell, n   the marginal i   row 

sum, and n . the marginal j   column sum. Also, n denotes the 
«J 

grand total. 

In order to obtain the null distribution of T, it will be 

necessary to consider each of the subcases separately. 

5.3-1 Neither Sets of Marginal Sums Fixed. 

In this subcase, we will consider the following null hypo- 

thesis: 

Ho : I  pij = pi.p.j I i = x» ••" r *. j = 1» •••> s ]  , 
(5.13) 

where p.. is the probability that an observation will fall in the 
A. l_ 

ij   cell, p.  are the marginal row probabilities, and p . the 
i. .J 

marginal column probabilities. Then 

r 
2 p. 
i=l 1' 

2 p   = 1 
J=l *J (5.U) 

The observed cell frequencies, n.,, will be distributed under the 

null hypothesis as: 

Cpo(nij)   = nl 

r      s 
TT     TTn     • 

i=l j=l 1J- 

-1 -   r      s n. ,"] 
TT     TT (p.   p   .)   1J 

.1=1 .1=1       '   ,J       J     ' (5.15) 

.J, i -'' 
■•-,;-->.,       j   '^^    ....      '-'■<■'■   ■ : / '~" 

■■■■/ '_>:-     - »'   .      ' ,''?■<■      .  .-■  - t^y      \- 
'■l ■■■"'<■■■- -V        -   -T<'      ' • .--.;,.-.-.    •   ;  , 

^BMM ^■^ 
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where '-^(i^.) will denote the probability of observing the 

n^j(i=l» 2, ..., r ; j = 1, 2, ..., s) , and the null distribution 

of T will be given by 

Pr{ T > t^ | HQ ] = J *o^niP ' such that T - *■<=< 
nij (5.16) 

The results for the cases a) r = 2, s = 3 and b)r = 3, s-3 

are summarized in figures (5.3) and (5.A). Since T is asymptoti- 

cally distributed as i he central x  distribution with (r - l)(s -1) 

degrees of freedom, this curve is also plotted on the graphs for 

comparison purposes. It should be noted that the exact distribution 

of T is fairly well approximated by the x  distribution for 

relatively small sample sizes. 

5.3.2 Only Row Marginal Sums Fixed. 

For this subcase the null hypothesis becomes 

Ho : I  pij = p.j I j = 1» 2 3 J ' with     <5'17) 

2p, = 1,   In., = n.  (fixed) .    (5.18) 
J=l *J j=l iJ    lm 

The distribution of the observed cell frequencies, n,,, under the 

null hypothesis is: 

Vij> ■ £ ["i.^t-ij')"1 (j1
p.jnii) 

I5.19) 
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and the null distribution of T will again be given by (5.16). 

Also T is asymptotically distributed as >  with (r-D(s-l)degrees 

of freedom. These results are displayed for several different sets 

of marginal sums, in figures (5.5) and (5.6). 

5-3.3 Both Sets of Marginal Sums Fixed. 

It has been shown by Mood [ 16] that the distribution of the 

cell frequencies, n. ., does not depend upon the cell probabilities, 

namely, p^., but is dependent only on the fixed marginal sums. 

Ihe distribution of the cell frequencies is given by the hyper- 

geometric distribution: 

cp(r.ij | nle>a. j fixed) = TTn. ». 
11=1 X'. 'kAHik'T ■ 

where 

r 
2 n 

i=l ij 
n . (fixed) ,   2 n, . n,  (fixed) 

(5.20) 

(5.21) 

The exact distribution of T is given by (5.16), ar.d T is 

2 
asymptotically distributed as x  with (r-l)(s-l) degrees of 

freedom. Typical results are given in figures (5.7) and (5.8) for 

several different sets of marginal sums. 

5.4 Further Extensions. 

The exact power of the T test for the case of a two-way 

classification has yet to be investigated. Also, both the null 
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distribution and power calculations ran be done for other classifi- 

cations such as a three-way table. However, present computing 

equipment is inadequate for extending most of the above results, 

since even a 3x3 contingency table with neither margins fixed 

requires a considerable amount of computing time on an IBM 7090. 

The actual number of combinations that were investigated for a 

sample size of 15 was 4.90,3H, and this number increases rapidly 

with n. 
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